

Power On

SPS vs Hybrid Pro's and Cons

Lindsay Hart

All AC sources are Synchronised & connected in parallel

1) <u>Power Conversion methodology used by component</u> <u>manufacturer</u>

2) System Architecture used by the system designer

Neither should have an impact on system performance if designed correctly

Power Conversion options1) Low-Frequency Transformer2) High-Frequency Transformer or Transformerless.

- Up to 240% additional short-term power
- Safety Isolation via transformer, steps up
- Heavy

lectronic

Power Conversion options

- 1) Low-Frequency Transformer
- 2) High Frequency Transformer or Transformerless

- Typically up to 10% additional short-term power
- Safety Isolation must be provided in other ways.
- Lightweight

ectronic

6

Power benefits of a Low Frequency Transformer

SP PRO Model	Continuous Output @25	30 minute output	1 minute output	Peak output 30 second	Continuous Charging @25	Charge Amps
SPMC480	3.5kW	5.25kW	6.0kW	8.4kW	3.5kW	73A
SPMC481	5.0kW	7.0kW	8.7kW	12.0kW	5.0kW	104A
SPMC482	7.5kW	11.25kW	13.0kW	18.0kW	7.5kW	156A
SPLC1200	15.0kW	23.0kW	26.0kW	33.0kW	15.0kW	125A
SPLC1202	20.0kW	30.0kW	35.0kW	38.0kW	20.0kW	166A

1) Power Conversion methodology used by component manufacturer

2) System Architecture used by the system designer

Neither should have an impact on system performance if designed correctly

Selectronic - separate components

Off Grid or On Grid, same product

Managed AC PV with Fronius or Fimer

electronic

Parallel and Multi-Phase

Single Phase:3kW-80kWDual Phase:7kW-160kWThree Phase:9kW-240kW

selectronic

using up to 4 units per phase using up to 4 units per phase using up to 4 units per phase

Powerchain Three Phase Capabilities

240kW Continuous battery inverter capacity

Up to 480kW PV Inverter rating

Key Take Aways

Off Grid or On Grid

- Mix and Match to suit your design needs with separate components
- Greater flexibility with system upgrades
- Significantly more power for the short term
- Switchboard upgrades unlikely
- AC or DC-coupled PV

selectronic

- Almost battery agnostic. Managed or Self Managed. Increase Ah without increasing inverter capacity
- Separate system components = greater redundancy

Thanks for listening

Questions?